腫瘤疫苗生物學活性評估
-
腫瘤疫苗背景
腫瘤疫苗,是一種具有預防和治 療潛力的有吸引力的替代免疫治 療選擇,是近年研究的熱點之一。針對腫瘤相關抗原(Tumor-associated antigen,TAA)或腫瘤特異性抗原 (Tumor specific antigen,TSA) 的疫苗可以特異性地攻擊和破壞抗原過表達的惡性細胞,并由于免疫記憶而實現慢性治 療反應。因此,與其他免疫療法相比,癌癥疫苗提供了特異性、安全性和可耐受的治 療。
根據腫瘤抗原的組分,癌癥疫苗大致可以分為四種類型:基于 DNA 的疫苗,基于 RNA 的疫苗,基于多肽的疫苗和基于免疫細胞的疫苗。FDA 批準的首 個個性化腫瘤疫苗 PROVENGE (Sipuleucel-T) 是一種基于免疫細胞的疫苗,用于激素難治性前列腺癌的治 療。除此之外,Moderna,BioNTech 都在布局基于 mRNA 的腫瘤疫苗。
圖 1 腫瘤疫苗抗原呈遞平臺示意圖
腫瘤疫苗有效性評估方法
生物體接種疫苗后,腫瘤抗原被帶到淋巴結,進而激活抗原特異性的 B 細胞和 T 細胞,活化的 B 細胞產生的抗體及活化的效應 T 細胞會使腫瘤內脹并誘導腫瘤細胞死亡。
圖 2 腫瘤疫苗誘導的免疫反應示意圖
如何有效的評估腫瘤疫苗的有效性是一個非常值得探討的問題,常用的腫瘤疫苗有效性驗證的方法,包括細胞因子檢測、CTL 活性檢測、T 細胞活化標志物檢測、抗體滴度檢測、ADCC 檢測等。
1、細胞因子檢測
細胞因子是由免疫細胞經過刺激而合成并分泌的小分子蛋白質,在免疫應答中起著非常重要的作用,因此可以通過細胞因子的分泌能力來反應疫苗誘導的細胞免疫的水平。常見的細胞因子有白介素 (IL) 、干擾素 (IFN)、 腫瘤壞死因子 (TNF) 等。下面比較了幾種常見的檢測方法。
ELISA 是一種非常經典的細胞因子的檢測方法,例如在王曉東等人發表的關于胃癌疫苗研究的文章中,提到了用 ELISA 的方法檢測接種疫苗后小鼠骨 髓源樹突狀細胞(BMDCs)分泌細胞因子的能力,檢測方法如下:
BMDCs 在含有 10ng/mL GM-CSF 和 10ng/mL IL-4 的 X-vivo 15 培養基中培養,37℃下培養 6 天,然后以每孔 5×104 細胞的密度在 96 孔板中接種。以 5μM 或 10μM 的最 終濃度加入疫苗抗原,孵育 24 小時。使用小鼠 TNF-α 和 IL-12 p70 ELISA Ready-SET-Go 試劑組定量培養上清中的 TNF-α 和 IL-12 。首先在 4℃下用捕獲抗體包被 ELISA 板過夜,然后在室溫下依次加入阻斷液、細胞培養上清和檢測抗體,孵育 1h 。 最 后加入終止液和顯色劑,用酶標儀 (BioTek) 在 450nm 處記錄 OD 值。
檢測結果如下:
從檢測結果可以看出,T7(TLR7 激動劑)的存在可以顯著提升 ML/MB 抗原誘導的免疫反應。
圖 3 ELISA 法測定小鼠骨 髓樹突狀細胞 (BMDCs) 分泌
TNF-α (a) 和 IL-12 (b) 的水平
Ankita Leekha 等人發表的關于 SRAS-COV2 疫苗文章中,提到了用 ELISPOT 的方法評估細胞因子的分泌水平,可以作為參考。具體方法如下:
從小鼠中分離脾細胞和肺細胞,使用小鼠 IFNγ ELISpot 基礎試劑盒和小鼠 IL4 ELISpot 基礎試劑盒 (Mabtech, VA, USA) 進行 IFNγ 和 IL4 ELISpot 檢測。在 37℃ 下,在預包被抗體的 ELISpot 板中,用抗原刺激脾細胞和肺細胞,培養 16-18 小時。第二天,洗掉細胞,加入生物素化的檢測抗體。洗板后,加入 1:30000 稀釋的 Extravidi-ALP 偶聯物,室溫孵育 1 小時。洗板后,每孔添加 70μL 顯色液,孵育 20-30min,形成斑點,然后用水清洗,干燥。使用 Cytation 7 (BioTek) 對斑點進行量化。每個點對應一個單獨的細胞因子分泌細胞。
檢測結果如下:
圖 4 ELIPSOT 方法檢測小鼠脾細胞
和肺細胞分泌細胞因子的水平
2、CTL 活性檢測
疫苗誘導的細胞毒性 T 淋巴細胞 (CTL) 可以直接殺傷腫瘤細胞,起到抗腫瘤的作用,因此可以通過檢測 CTL 的殺傷效應來反應疫苗的效果。常用的檢測細殺傷效應的方法有很多,下表列舉了一些常用的方法。
王曉東等人發表的文章中提到了 LDH 檢測,檢測方法如下:
從接種疫苗小鼠的脾 臟中分離淋巴細胞(效應細胞)。EAC 腫瘤細胞(靶細胞)與淋巴細胞(效應細胞-靶細胞比例為 50:1)共培養 4h,使用乳酸脫氫 (LDH) 法測定細胞毒性。將培養 4h 后的培養上清加入在 ELISA 板中,室溫下加入底物溶液,孵育 30min。最 后,加入終止液終止反應,并用酶標儀 (BioTek) 在 490nm 處檢測光密度。
檢測結果如下:
相對于 PBS 對照組來說,T7-MB 組 CTL 細胞具有顯著的殺傷效應。
圖 5 LDH 法測定 CTL 介導的 EAC 靶細胞的裂解水平
3、抗體滴度及親和力檢測
腫瘤疫苗除了可以誘導細胞免疫之外,也可誘導體液免疫,對此可通過對抗體滴度及親和力進行檢測來反應疫苗抗腫瘤的效果,ELISA 是一種非常經典的檢測方法。
上述關于胃癌疫苗的文章中通過 ELISA 方法測定小鼠接種疫苗后血清中總 IgG 含量,具體檢測過程如下:
小鼠接種疫苗后收集血液樣本,通過 3000g 離心 15 分鐘獲得血清樣本。ELISA 板預先在 4℃ 包被 BSA-MG1 過夜,然后在室溫下依次加載封閉溶液 2h,血清樣品 (1:50 稀釋) 和檢測抗體 1h。最 后,在體系中加入 p-NPP 底物 (Millipore) 和終止液,用酶標儀 (BioTek) 在 405nm 處記錄 OD 值。
檢測結果如下:
相對于 PBS 對照組來說,T7-MB 組抗體含量明顯上升。
圖6 ELISA法測定疫苗誘導的血清抗體水平
除此之外,在 Emily C. Gale 等人發表的關于 mRNA 遞送系統及輔劑研究的文章中,通過 ELISA 的方法測定了 mRNA OVA 模式疫苗誘導的 OVA 特異性抗體的絕 對含量及其親和力。具體檢測方法如下:
抗體濃度:小鼠接種加強疫苗后,采集血液樣品,血清按照 1:100 000 進行稀釋。采用 anti-OVA mouse IgG1 ELISA (Cayman Chemicals) 試劑,按照試劑廠家的說明進行 ELISA 實驗。使用 Synergy H1 Microplate Reader (BioTek) 在 450nm 處記錄 OD 值。根據標準曲線計算血清抗體濃度,表示 mg/mL。
抗體親和性:將 12 個梯度稀釋的血清與恒定濃度標記 HRP 的 anti-OVA 抗體 (3nM) 混合,并在 OVA 抗原包被的板中室溫孵育 2 小時,洗板后用 TMB 底物孵育,用 HCl 停止反應。測定 450nm 處的 OD 值。根據業內發現的單克隆抗體的共同親和力,假設對照抗體的 KD 為 1nM 對實驗組的 KD 值進行統計。這一假設僅影響報告的絕 對 KD 值,而不影響實驗組之間的相對差異。
檢測結果如下:
pIC 為雙鏈 RNA 結構模擬物,圖E中比較了可溶性的 pIC 和不同納米顆粒遞送系統誘導的絕 對抗體含量,從圖 E 中可以看出 2B 遞送系統誘導的 OVA 特異性抗體含量最 高。從F和G可以看出 2B 遞送系統相對于可溶性 pIC 來說誘導的 IgG 親和力也顯著升高。
圖 7 pIC/PBAE NPs 增強體液免疫
4、ADCC 檢測
疫苗誘導體液免疫產生的抗體能夠捕捉目標抗原,阻斷這個靶分子的功能,也可以引導其他免疫細胞(如巨噬細胞和自然殺傷細胞)殺死表達抗原的靶細胞,在腫瘤治 療中,特別是血液腫瘤中,抗體依賴的細胞介導的細胞毒性作用 (ADCC) 起著關鍵作用,ADCC 常用的檢測方法包括細胞活力檢測、LDH 檢測、工程細胞株、Delfia、RTCA、細胞成像檢測等。
王曉東等人發表的關于胃癌疫苗研究的文章中,提到了 LDH 方法檢測 ADCC,檢測方法如下:
小鼠接種疫苗后,采集其血清樣本(1:25 稀釋),然后與 EAC 細胞(靶細胞)在 37°C 孵育 30min。使用小鼠 NK 細胞分離試劑盒從正常 BALB/c 小鼠中分離出自然殺傷 (NK) 細胞(效應細胞),與抗體標記的 EAC 細胞以效靶比 50:1 共培養 4 小時。采用 LDH 法 (Promega) 測定細胞毒性,檢測方法與之前提到的 CTL 活性檢測的方法一致。
檢測結果如下:
相對于 PBS 對照組來說,T7-MB 組產生的抗體具有顯著的殺傷效應。
圖 8 LDH 法測定血清抗體介導的 EAC 靶細胞的裂解水平
腫瘤疫苗生物學活性檢測解決方案推薦
本文介紹了腫瘤疫苗活性檢測的常用方法,包括細胞因子檢測、CTL 活性檢測、抗體滴度及親和力檢測、ADCC 檢測等方法,涉及到了酶標儀、成像系統、流式、RTCA、洗板分液系統等設備。Agilent 細胞分析事業部可以從多個角度為用戶提供從樣品處理,到結果檢測再到數據分析的全面解決方案。
全部評論(0條)
熱門問答
- 腫瘤疫苗生物學活性評估
腫瘤疫苗背景
腫瘤疫苗,是一種具有預防和治 療潛力的有吸引力的替代免疫治 療選擇,是近年研究的熱點之一。針對腫瘤相關抗原(Tumor-associated antigen,TAA)或腫瘤特異性抗原 (Tumor specific antigen,TSA) 的疫苗可以特異性地攻擊和破壞抗原過表達的惡性細胞,并由于免疫記憶而實現慢性治 療反應。因此,與其他免疫療法相比,癌癥疫苗提供了特異性、安全性和可耐受的治 療。
根據腫瘤抗原的組分,癌癥疫苗大致可以分為四種類型:基于 DNA 的疫苗,基于 RNA 的疫苗,基于多肽的疫苗和基于免疫細胞的疫苗。FDA 批準的首 個個性化腫瘤疫苗 PROVENGE (Sipuleucel-T) 是一種基于免疫細胞的疫苗,用于激素難治性前列腺癌的治 療。除此之外,Moderna,BioNTech 都在布局基于 mRNA 的腫瘤疫苗。
圖 1 腫瘤疫苗抗原呈遞平臺示意圖
腫瘤疫苗有效性評估方法
生物體接種疫苗后,腫瘤抗原被帶到淋巴結,進而激活抗原特異性的 B 細胞和 T 細胞,活化的 B 細胞產生的抗體及活化的效應 T 細胞會使腫瘤內脹并誘導腫瘤細胞死亡。
圖 2 腫瘤疫苗誘導的免疫反應示意圖
如何有效的評估腫瘤疫苗的有效性是一個非常值得探討的問題,常用的腫瘤疫苗有效性驗證的方法,包括細胞因子檢測、CTL 活性檢測、T 細胞活化標志物檢測、抗體滴度檢測、ADCC 檢測等。
1、細胞因子檢測
細胞因子是由免疫細胞經過刺激而合成并分泌的小分子蛋白質,在免疫應答中起著非常重要的作用,因此可以通過細胞因子的分泌能力來反應疫苗誘導的細胞免疫的水平。常見的細胞因子有白介素 (IL) 、干擾素 (IFN)、 腫瘤壞死因子 (TNF) 等。下面比較了幾種常見的檢測方法。
ELISA 是一種非常經典的細胞因子的檢測方法,例如在王曉東等人發表的關于胃癌疫苗研究的文章中,提到了用 ELISA 的方法檢測接種疫苗后小鼠骨 髓源樹突狀細胞(BMDCs)分泌細胞因子的能力,檢測方法如下:
BMDCs 在含有 10ng/mL GM-CSF 和 10ng/mL IL-4 的 X-vivo 15 培養基中培養,37℃下培養 6 天,然后以每孔 5×104 細胞的密度在 96 孔板中接種。以 5μM 或 10μM 的最 終濃度加入疫苗抗原,孵育 24 小時。使用小鼠 TNF-α 和 IL-12 p70 ELISA Ready-SET-Go 試劑組定量培養上清中的 TNF-α 和 IL-12 。首先在 4℃下用捕獲抗體包被 ELISA 板過夜,然后在室溫下依次加入阻斷液、細胞培養上清和檢測抗體,孵育 1h 。 最 后加入終止液和顯色劑,用酶標儀 (BioTek) 在 450nm 處記錄 OD 值。
檢測結果如下:
從檢測結果可以看出,T7(TLR7 激動劑)的存在可以顯著提升 ML/MB 抗原誘導的免疫反應。
圖 3 ELISA 法測定小鼠骨 髓樹突狀細胞 (BMDCs) 分泌
TNF-α (a) 和 IL-12 (b) 的水平
Ankita Leekha 等人發表的關于 SRAS-COV2 疫苗文章中,提到了用 ELISPOT 的方法評估細胞因子的分泌水平,可以作為參考。具體方法如下:
從小鼠中分離脾細胞和肺細胞,使用小鼠 IFNγ ELISpot 基礎試劑盒和小鼠 IL4 ELISpot 基礎試劑盒 (Mabtech, VA, USA) 進行 IFNγ 和 IL4 ELISpot 檢測。在 37℃ 下,在預包被抗體的 ELISpot 板中,用抗原刺激脾細胞和肺細胞,培養 16-18 小時。第二天,洗掉細胞,加入生物素化的檢測抗體。洗板后,加入 1:30000 稀釋的 Extravidi-ALP 偶聯物,室溫孵育 1 小時。洗板后,每孔添加 70μL 顯色液,孵育 20-30min,形成斑點,然后用水清洗,干燥。使用 Cytation 7 (BioTek) 對斑點進行量化。每個點對應一個單獨的細胞因子分泌細胞。
檢測結果如下:
圖 4 ELIPSOT 方法檢測小鼠脾細胞
和肺細胞分泌細胞因子的水平
2、CTL 活性檢測
疫苗誘導的細胞毒性 T 淋巴細胞 (CTL) 可以直接殺傷腫瘤細胞,起到抗腫瘤的作用,因此可以通過檢測 CTL 的殺傷效應來反應疫苗的效果。常用的檢測細殺傷效應的方法有很多,下表列舉了一些常用的方法。
王曉東等人發表的文章中提到了 LDH 檢測,檢測方法如下:
從接種疫苗小鼠的脾 臟中分離淋巴細胞(效應細胞)。EAC 腫瘤細胞(靶細胞)與淋巴細胞(效應細胞-靶細胞比例為 50:1)共培養 4h,使用乳酸脫氫 (LDH) 法測定細胞毒性。將培養 4h 后的培養上清加入在 ELISA 板中,室溫下加入底物溶液,孵育 30min。最 后,加入終止液終止反應,并用酶標儀 (BioTek) 在 490nm 處檢測光密度。
檢測結果如下:
相對于 PBS 對照組來說,T7-MB 組 CTL 細胞具有顯著的殺傷效應。
圖 5 LDH 法測定 CTL 介導的 EAC 靶細胞的裂解水平
3、抗體滴度及親和力檢測
腫瘤疫苗除了可以誘導細胞免疫之外,也可誘導體液免疫,對此可通過對抗體滴度及親和力進行檢測來反應疫苗抗腫瘤的效果,ELISA 是一種非常經典的檢測方法。
上述關于胃癌疫苗的文章中通過 ELISA 方法測定小鼠接種疫苗后血清中總 IgG 含量,具體檢測過程如下:
小鼠接種疫苗后收集血液樣本,通過 3000g 離心 15 分鐘獲得血清樣本。ELISA 板預先在 4℃ 包被 BSA-MG1 過夜,然后在室溫下依次加載封閉溶液 2h,血清樣品 (1:50 稀釋) 和檢測抗體 1h。最 后,在體系中加入 p-NPP 底物 (Millipore) 和終止液,用酶標儀 (BioTek) 在 405nm 處記錄 OD 值。
檢測結果如下:
相對于 PBS 對照組來說,T7-MB 組抗體含量明顯上升。
圖6 ELISA法測定疫苗誘導的血清抗體水平
除此之外,在 Emily C. Gale 等人發表的關于 mRNA 遞送系統及輔劑研究的文章中,通過 ELISA 的方法測定了 mRNA OVA 模式疫苗誘導的 OVA 特異性抗體的絕 對含量及其親和力。具體檢測方法如下:
抗體濃度:小鼠接種加強疫苗后,采集血液樣品,血清按照 1:100 000 進行稀釋。采用 anti-OVA mouse IgG1 ELISA (Cayman Chemicals) 試劑,按照試劑廠家的說明進行 ELISA 實驗。使用 Synergy H1 Microplate Reader (BioTek) 在 450nm 處記錄 OD 值。根據標準曲線計算血清抗體濃度,表示 mg/mL。
抗體親和性:將 12 個梯度稀釋的血清與恒定濃度標記 HRP 的 anti-OVA 抗體 (3nM) 混合,并在 OVA 抗原包被的板中室溫孵育 2 小時,洗板后用 TMB 底物孵育,用 HCl 停止反應。測定 450nm 處的 OD 值。根據業內發現的單克隆抗體的共同親和力,假設對照抗體的 KD 為 1nM 對實驗組的 KD 值進行統計。這一假設僅影響報告的絕 對 KD 值,而不影響實驗組之間的相對差異。
檢測結果如下:
pIC 為雙鏈 RNA 結構模擬物,圖E中比較了可溶性的 pIC 和不同納米顆粒遞送系統誘導的絕 對抗體含量,從圖 E 中可以看出 2B 遞送系統誘導的 OVA 特異性抗體含量最 高。從F和G可以看出 2B 遞送系統相對于可溶性 pIC 來說誘導的 IgG 親和力也顯著升高。
圖 7 pIC/PBAE NPs 增強體液免疫
4、ADCC 檢測
疫苗誘導體液免疫產生的抗體能夠捕捉目標抗原,阻斷這個靶分子的功能,也可以引導其他免疫細胞(如巨噬細胞和自然殺傷細胞)殺死表達抗原的靶細胞,在腫瘤治 療中,特別是血液腫瘤中,抗體依賴的細胞介導的細胞毒性作用 (ADCC) 起著關鍵作用,ADCC 常用的檢測方法包括細胞活力檢測、LDH 檢測、工程細胞株、Delfia、RTCA、細胞成像檢測等。
王曉東等人發表的關于胃癌疫苗研究的文章中,提到了 LDH 方法檢測 ADCC,檢測方法如下:
小鼠接種疫苗后,采集其血清樣本(1:25 稀釋),然后與 EAC 細胞(靶細胞)在 37°C 孵育 30min。使用小鼠 NK 細胞分離試劑盒從正常 BALB/c 小鼠中分離出自然殺傷 (NK) 細胞(效應細胞),與抗體標記的 EAC 細胞以效靶比 50:1 共培養 4 小時。采用 LDH 法 (Promega) 測定細胞毒性,檢測方法與之前提到的 CTL 活性檢測的方法一致。
檢測結果如下:
相對于 PBS 對照組來說,T7-MB 組產生的抗體具有顯著的殺傷效應。
圖 8 LDH 法測定血清抗體介導的 EAC 靶細胞的裂解水平
腫瘤疫苗生物學活性檢測解決方案推薦
本文介紹了腫瘤疫苗活性檢測的常用方法,包括細胞因子檢測、CTL 活性檢測、抗體滴度及親和力檢測、ADCC 檢測等方法,涉及到了酶標儀、成像系統、流式、RTCA、洗板分液系統等設備。Agilent 細胞分析事業部可以從多個角度為用戶提供從樣品處理,到結果檢測再到數據分析的全面解決方案。
- 腫瘤放射ZL生物學的幾個問答題請幫助解決謝`~~~~!!!!
- 問答題: 1 簡述L-Q模型中α/β的含義及其應用. 2 分次放療的生物學基礎. 3 超分割放療的生物學意義. 4 高LET與低LET的生物學特點. 5 低劑量率近距離放療的特點. 6 試述常規放療標準ZL條件下人體正常組織耐受量的含義. 7 試述電離輻射對生物作... 問答題: 1 簡述L-Q模型中α/β的含義及其應用. 2 分次放療的生物學基礎. 3 超分割放療的生物學意義. 4 高LET與低LET的生物學特點. 5 低劑量率近距離放療的特點. 6 試述常規放療標準ZL條件下人體正常組織耐受量的含義. 7 試述電離輻射對生物作用的時間過程 8試述電離輻射對DNA的損傷類型以及對放射敏感性的影響. 9 試述影響腫瘤生長速度的因素及其在放射ZL中的意義. 10 試述高LET 放射ZL的生物學基礎并舉例. 以上請高手指教急用謝謝~~ 能寫多少寫多少謝~~~ 展開
- 自身疫苗 化學疫苗 合成疫苗是什么意思
- 為什么說分子疫苗,dna疫苗,化學合成疫苗還不能完全取代傳統疫苗
- 為什么說分子疫苗,dna疫苗,化學合成疫苗還不能完全取代傳統疫苗
- 職業病評估
- 生物學是什么!
- 疫苗安全解決方案
方案內容闡述:
海信疫苗安全解決方案實現疫苗從生產、運輸、存儲到接種的省市縣鄉四級安全聯網方案。全天候、全過程、全覆蓋、可追溯地,保證每一份疫苗更安全。
核心產品:
醫用冷藏箱系列、醫用冷藏冷凍箱系列、醫用低溫冰箱系列、溫濕度監控儀、短信報警平臺、冷鏈監控平臺等
方案優勢:
1、疫苗集中管理,存儲溫度實時監控;
2、進出存信息化,疫苗發放與取用;
3、人機互聯互動,提高三查七對準確性;
4、分級權限管理,疫苗全程監控和可追溯
- 針織布牢度評估
- 請問各位針織布行業工作多年的高手們: 針織布牢度評估(洗水牢度中的色變沾色.摩擦牢度中的干濕擦以及光牢度等等)一般各項指標要達到多少級呢??? 影響這些具體級數的主要是什么因素呢??(是不同的針織布.顏色的深淺.還是針織布具體的用途如成年穿嬰兒穿等... 請問各位針織布行業工作多年的高手們: 針織布牢度評估(洗水牢度中的色變沾色.摩擦牢度中的干濕擦以及光牢度等等)一般各項指標要達到多少級呢??? 影響這些具體級數的主要是什么因素呢??(是不同的針織布.顏色的深淺.還是針織布具體的用途如成年穿嬰兒穿等???) 望乞各位高手賜教..越詳細越好..感激! 展開
- 生物學離心方法
- 生物學所用到的離心方法有哪幾種?如:差速離心等。請詳細介紹
- 腦磷脂生物學功能
- 腦磷脂生物學功能和作用... 腦磷脂生物學功能和作用 展開
- 合成生物學握手AI,你想要的合成生物學
根據NCBI的ClinVar數據庫統計,包括罕見疾病,如鐮狀細胞病、地中海貧血和先天性萊伯黑朦等超過3萬7千種已知疾病與致病性單核苷酸變異(SNV)有關,SNV可能導致原始DNA序列、轉錄水平和蛋白質序列等其他特性的變化。而新一代CRISPR/Cas9技術——堿基編輯器(BEs)可以有效地修復堿基突變,而不會誘導雙鏈DNA斷裂,從而能夠直接、不可逆地校正堿基突變,對于治愈SNV引起的遺傳疾病具有十分廣闊的前景。已經報道的有誘導C·G到T·A轉化的胞嘧啶堿基編輯器(CBE)、誘導A·T到G·C轉化的腺嘌呤堿基編輯器(ABE)和使C·G到G·C轉換的糖基化酶堿基編輯器(GBE),這些BEs為治 療50%以上致病性SNV提供了幾乎理想的解決方案。
然而,在實施基于BE的基因療法之前,有必要大量構建具有致病性SNV的細胞疾病模型,以用于開發和優化BEs,并使其在基因治 療中的應用成為可能。同時,根據ClinVar的數據,大約50%的人類致病性SNV是C·G到T·A的轉化,然而目前很難通過合理的人力和資金投入獲得大量攜帶這些SNV的細胞模型。這一方面是由于大規模樣品,手動操作不僅耗時,而且容易出錯,一致性較差且成本高昂;另外一方面,現有的基于目標-位點集成庫的方法,如Be-Hive等在為AI學習和預測編輯性能的數據時,缺乏原位信息的綜合編輯位點數據,同時又缺少真實染色體環境(先前研究表明,核酸酶的性能與染色質可及性之間存在很強的相關性,并且基因編輯在真核染色質中比異染色質中更有效)。
中科院天津工業生物技術研究所和天津科技大學的團隊,開發了一個由以下四個模塊組成的用于哺乳動物細胞高通量原位基因編輯的自動化平臺,實現了哺乳動物細胞基因編輯的標準化和可拓展性。
(1)內源性靶gRNA計算機輔助設計;
(2)gRNA表達質粒構建;
(3)哺乳動物細胞堿基編輯;
(4)CBEs性能模型構建的機器學習。
四個模塊組成的用于哺乳動物細胞高通量原位基因編輯的自動化平臺,實現了哺乳動物細胞基因編輯的標準化和可拓展性。該平臺借助大規模的原位編輯數據和序列信息,結合局部染色質可及性,具有原位數據的機器學習模型能夠更好地預測實際的堿基編輯效率,使獲得內生目標的大規模編輯數據集成為可能。
圖1 全自動高通量哺乳動物基因編輯平臺概覽
在這四個模塊中,第 一個模塊用于負責gRNA設計,以將人類致病性SNV引入野生型細胞,作者使用生物信息學分析選擇了1210個基因作為靶位點,使用包含每個靶位點上游3 bp至下游750 bp靶區的DNA序列,分批處理用于分析編輯結果的三對引物。對于自動化gRNA質粒構建工作流程模塊,gRNAs質粒構建過程中采用了貝克曼庫爾特Echo納升級聲波移液系統用于操縱DNA組裝反應,相對于標準的Golden Gate DNA組裝方法的反應體積為15μl,Echo的納升級和無吸頭操作能夠對實驗步驟進行一系列優化,將反應系統最小化到1微升的總體積,從而顯著降低了實驗成本。
隨后使用貝克曼庫爾特Biomek i7自動化移液工作站將DH5α感受態細胞與Golden Gate產物進行混合,通過ClonePix進行轉化鋪板,并在通過DNA測序驗證構建質粒之后,使用Biomek i7進行質粒提取。為了分析數據編輯結果,使用Python腳本讀取sanger測序文件,比較N20,并創建兩個參考csv文件。錯誤的組裝csv文件包括一個選擇列表,用于從48孔細菌菌落板到96孔深孔板中挑選新菌落,以便ClonePix進行另一輪驗證。正確組裝csv文件包含N20測序及其在96孔深孔板中的位置,用于使用貝克曼庫爾特Biomek i7自動化移液工作站進行質粒提取。此模塊高通量自動化系統在4天之內共構建和分析了1210個gRNA質粒,成功率達99%,實現了每天384個gRNA組裝的通量。而后續使用Biomek i7進行的質粒提取,通量則可達到576個質粒/天。
圖2 全自動gRNA質粒構建工作流程概述示意圖
第三個模塊是哺乳動物細胞中的堿基編輯,如圖3。通過優化實驗條件,作者開發了使用Biomek i7自動化移液工作站進行包括細胞接種和轉染、細胞培養基更換以及進行樣品收集在內的編輯過程。隨后進行靶區域的細胞裂解和PCR擴增。全自動高通量系統在6h內將1210組gRNA和BE4max質粒共轉染到HEK293T細胞中,并在2 h內完成后續培養基更換。培養5天后,收獲編輯的細胞于8小時內完成進行PCR分析,然后進行sanger測序。使用Python腳本產生3個csv文件,一個用于準備新一輪PCR的挑選列表,以分析使用Biomek i7從96孔裂解樣品板到96孔PCR板的false sample;第二個csv文件包含用于分析false sample的第二個引物對的序列和位置信息,用于新一輪PCR;第三個csv文件包含正確的樣本和編輯效率結果,用于下一步的AI學習。
圖3 自動化基因編輯過程的工作流程概述
第四個模塊為作者開發的AI模型——染色質可及性學習模型(CAELM),預測基礎編輯的結果。CAELM基于自動化平臺生成的高度均勻的原位基因組編輯數據,預測HEK4T細胞中的BE293max行為,并實現了0.64的皮爾遜相關值。皮爾遜r是評估數值數據模型準確性的最普遍指標之一,CAELM模型中考慮了目標序列的真實染色體環境,這提供了更好、更現實的預測;同時,CAELM還提供了模型輸入的特征重要性得分,并揭示了DNA可及性相對于目標序列上下文的貢獻在預測中接近1:6。
通過與32個不同基因組位點的手動操作進行比較,其中16個目標位點在兩個操作過程中的編輯效率幾乎相等,而自動化高通量系統在其他14個位點的統計分析中表現出更高的編輯效率。這些結果表明,自動化高通量系統能夠以與手動操作相當的效率執行基礎編輯;隨機選擇BE4max編輯靶標的1210個與疾病相關的SNV的編輯效率均達到了較高水平,說明可以同時有效地操縱數千個內源性靶位點的人類細胞的全自動高通量原位基因編輯平臺的成功建立。
- 活性聚合的活性聚合特征:
- 豬瘟疫苗如何做抗原檢測?
- 腫瘤標志物高,就是得了腫瘤嗎
- 如何評估管理軟件優劣
- TSE風險評估是什么
- 檢驗科生物安全等級評估
4月突出貢獻榜
推薦主頁
最新話題
-
- #DeepSeek如何看待儀器#
- 干體爐技術發展與應用研究
- 從-70℃到150℃:一臺試驗箱如何終結智能...從-70℃到150℃:一臺試驗箱如何終結智能調光膜失效風險?解決方案:SMC-210PF-FPC溫濕度折彎試驗箱的五大核心價值1. 多維度環境模擬,覆蓋全生命周期測試需求超寬溫域:支持-70℃至+150℃的極限溫度模擬(可選配),復現材料在極寒、高溫、冷熱沖擊下的性能表現;控濕:濕度范圍20%~98%RH(精度±3%RH),模擬熱帶雨林、沙漠干燥等復雜工況,暴露材料吸濕膨脹、分層缺陷;動態折彎:0°~180°連續可調折彎角度,支持R1~R20彎曲半徑設定,模擬實際裝配中的微小應力,提前預警裂紋、斷裂風險。
參與評論
登錄后參與評論