微流控/微流體納米顆粒與納米脂質體顆粒制備套裝
●GX合成納米顆粒/納米脂質體
高通量、單分散性和重復性
●簡單可用的微流控系統(tǒng)
開箱即用、設置實驗裝置,然后開始實驗
●生物醫(yī)學應用
合成用于藥物輸送的PLGA納米顆粒
●套裝的多用途性
通過更換微流控芯片可實現不同的實驗項目如單乳液滴產生、納米脂質體、細胞培養(yǎng)等
微流體納米顆粒合成套裝包括用于合成具有良好單分散性,高通量和可重現性的納米顆粒的所有微流體組件包含高精密壓力控制器和芯片。該套裝可用于合成單分散直徑小于200 μm的PLGA納米顆粒。通過更換不同規(guī)格的微流控芯片,同時保持微流控設備不變,您還可以合成單分散直徑更小如10 nm的納米顆粒。
基于快速準確的OB1流量控制器和鞘液流微流控芯片,與傳統(tǒng)的實驗宏觀實驗相比,該套裝解決方案縮短了納米顆粒的合成時間和減少了試劑消耗。
微流體納米粒子合成
標準的微流控納米顆粒合成套裝包含兩通道壓力控制器OB1 MK3+,壓力通道泵送利用微流體動力流聚焦來實現納米顆粒合成過程中所需的兩種化學溶液。該鞘流納米顆粒合成允許受控的納米沉淀。流體反應的穩(wěn)定性和動力學直接取決于微流體通道中的每種流體流速。
通過多個低流量傳感器MFS或BFS,可以測量和調節(jié)管路中的液體流量。OB1 MK3+流量控制器是鞘流聚焦的ZJ解決方案,因為它是完全無脈沖的,而對于標準的廣泛使用的注射泵卻具有很大的脈沖流動。
微流控納米沉淀技術可以實現良好的通量、單分散性以及可調的粒徑,并且通常可以更好地控制納米顆粒的合成。有關更多信息,請閱讀我們對微流體中納米顆粒合成的評論(https://www.elveflow.com/microfluidic-reviews/general-microfluidics/microfluidic-nanoparticle-synthesis-short-review/),或PLGA納米沉淀的評論(https://www.elveflow.com/microfluidic-reviews/general-microfluidics/microfluidics-for-plga-nanoparticle-synthesis-a-review/)。
多功能套裝可確保不同組件之間的具有良好的兼容性,允許即插即用的方法,由單個定制化軟件控制,并可用于其他不同的實驗。該微流控納米顆粒合成套裝既適合初學者,也適合專家用戶。
微流控納米顆粒合成套裝包含:
1、OB1 MK3+流量控制器
2、2個MFS流量傳感器
3、2個儲液池
4、1個微流控芯片
5、所需配件:PTFE導管、過濾器、接頭連接器等
6、ESI操作軟件
為什么使用微流體產生納米顆粒?
由于可精細調節(jié)微流體的流動性,使用微流體技術合成納米顆粒是降低納米顆粒直徑分散性的好方法。非常快的動力學對于例如合成聚合物納米顆粒的結晶和沉淀過程也是非常重要的。
此外,微流體技術是減少納米顆粒合成所需的潛在有價值樣品的一種方法。
總而言之,就時間、產率和分散性而言,使用微流體技術合成納米顆粒比宏觀的傳統(tǒng)實驗合成更加有效。由于微流控芯片已經小型化,因此,可以在更復雜的實驗平臺中實施納米粒子合成組分,以執(zhí)行復雜且多功能的集成過程。
PLGA納米粒子:(A)在PEG修飾的PLGA納米粒子中化學偶聯或化學ZL劑的簡單封裝。(B)PLGA納米粒子的TEM圖。Scale bar: 100 nm [1]
[1] Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell. 2011 Jan 31, 3(1), 3
應用
微流體鞘液連續(xù)流動納米沉淀原理
已經顯示,微流體技術對于合成具有可調形狀和尺寸的有機和無機納米粒子特別有用[1]。您可以使用微流控納米顆粒合成套裝實現“自下而上”的納米顆粒合成方法,該方法通常包括三個階段:由聚合單體組成的納米顆粒成核,通過更多單體的聚集而使核生長并ZZ達到平衡[2-3]。與傳統(tǒng)的宏觀實驗合成相比,微流體合成納米顆粒具有更好的產率和更好的可調節(jié)性[4]。
以PLGA納米沉淀為例,PLGA單體溶解在有機溶劑中,并芯片的中間通道。與表面活性劑混合的水溶液注入到芯片的鞘流通道中,以聚焦PLGA流體流。通過擴散形成濃度梯度和PLGA納米顆粒沉淀,因為PLGA分子不溶于水[5]。
還已經使用微流控技術合成了其他納米顆粒,例如用于表面等離子共振(SPR)的金屬納米顆粒[6]和 聚二乙炔納米顆粒[7]。
1. Ma, J., et al., Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications – a review. Lab Chip, 2017. 17(2): p. 209-226.
2. Karnik, R., et al., Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett, 2008. 8(9): p. 2906-12.
3. Lababidi, N., Sigal, V., Koenneke, A., Schwarzkopf, K., Manz, A., & Schneider, M. (2019). Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. Beilstein Journal of Nanotechnology, 10, 2280–2293.
4. Visaveliya, N. and J.M. K?hler, Single-step microfluidic synthesis of various nonspherical polymer nanoparticles via in situ assembling: dominating role of polyelectrolytes molecules. ACS Appl Mater Interfaces, 2014. 6(14): p. 11254-64.
5. Donno, R., Gennari, A., Lallana, E., De La Rosa, J. M. R., D’Arcy, R., Treacher, K., Hill, K., Ashford, M., & Tirelli, N. (2017). Nanomanufacturing through microfluidic- assisted nanoprecipitation: Advanced analytics and structure-activity relationships. International Journal of Pharmaceutics, 534(1–2), 97–107.
6. Boken, J., D. Kumar, and S. Dalela, Synthesis of Nanoparticles for Plasmonics Applications: A Microfluidic Approach. Synthesis and Reactivity in Inorganic, Metal- Organic, and Nano-Metal Chemistry, 2015. 45(8): p. 1211-1223.
7. Baek, S., et al., Nanoscale diameter control of sensory polydiacetylene nanoparticles on microfluidic chip for enhanced fluorescence signal. Sensors and Actuators B: Chemical, 2016. 230: p. 623-629.
配置您的微流體納米顆粒和納米脂質體產生套裝
微流控納米顆粒/納米脂質體合成套裝是高度可定制的,可以采用不同的微流控芯片合成不同規(guī)格的納米顆粒或納米脂質體。例如,微流控芯片合成后的流體通道更長或有更大的反應空間。
鞘液流芯片的材質有PMMA或COP兩種材料,這兩種材料都是光學透明的,并且與大多數的納米顆粒合成協議相兼容。
此外,如果需要用到負壓的流體控制,您可以在現有的套裝設備里面升級您的流量控制器OB1,將其升級到OB1 DUAL正壓和負壓功能,同時您還可以選擇不同規(guī)格的儲液池如從1.5 mL Eppendorf管到100 mL玻璃瓶。當然,您還可以選擇科式流量傳感器BFS來代替MFS,以進一步改善流量控制。
微流控人字形玻璃混合芯片
人字型混合器玻璃芯片是一種可用于通過人字形通道進行ZJ混合液體的有用工具。采用1/4-28UNF螺紋端口和對應的接頭,可允許您在一秒鐘內將該芯片連接到您的實驗裝置!
該通用型玻璃芯片通過減少擴散所需的長度并增加溶質在流體之間傳輸的可能性,從而提供了一種快速混合兩種流體的方法。
這種人字形芯片使用方便、經濟可靠,可應用于您的所有實驗:
● 高強度光學透明玻璃
● 標準顯微鏡載玻片尺寸(25×75 mm)
● 標準1/4-28UNF螺紋端口
● 易于處理
● 只需使用1/4-28UNF接頭配件(可用于外徑1/16英寸的導管)將芯片連接到您的裝置即可。
工作原理與應用
人字形混合器通過誘導混沌流的形成,在低雷諾數條件下顯示加速混合。
人字形混合器芯片微通道底部具有不對稱的人字形凹槽的特定圖案,該凹槽能夠產生螺旋流和用于混合兩種液體的混亂攪拌。
流經微通道的流體的混合具有很多的應用,例如化學反應中所用試劑溶液的均質化。
Z近,這種人字形混合器芯片已經在脂質體(封閉的磷脂囊泡)的產生中取得了重要的進步。Cheung等人(Int J Pharma 2019)確實S次報道了使用人字形混合器芯片產生穩(wěn)定且均勻的(100 nm)聚乙二醇化脂質體。他們研究了不同配方(水溶液、初始脂質濃度、脂質成分和組分)和工藝參數的影響。
與其他微流控設備相比,該混合器芯片顯示出更高的通量,更快的混合和更小的洗脫。
人字形玻璃混合芯片的規(guī)格參數
寬度和長度:25 ×75 mm
通道深度:0.08 mm
通道寬度:0.1到0.5 mm
體積:3.3 μL
混合體積:0.47 μL
混合長度:28.7 mm
材質:玻璃
連接器:1/4-28接頭
在混合部分,有6個混合元件(人字形)形成一個塊(半個循環(huán))和30個塊,因此,總共有15個完整循環(huán)。該混合芯片在1到3bar的壓力進行了測試,但也進行了少量的10bar壓力測試。
● 人字形的兩個臂是通道尺寸(200 μm)的1/3到2/3
● 人字形之間的距離是50 μm
● 每個混合元件的寬度是50 μm,高度是30 μm
參考論文
Calvin C.L.Cheung, Wafa T.Al-Jamal. Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. International Journal of Pharmaceutics, Volume 566, 20 July 2019, Pages 687-696. PDF版下載 here
您可以根據具體的實驗項目單獨定制納米顆粒或納米脂質體合成芯片,其他設備無需變動,可持續(xù)使用。
全部評論(0條)
推薦閱讀
-
- 電場與壓力驅動流的相互作用誘導微流控顆粒遷移
- 膠體顆粒在微通道內的橫向遷移引起了人們的關注。施加外加電場和壓力驅動的流體就會引起這種橫向遷移。本文通過實驗研究電場和壓力驅動流動共同存在的6μm顆粒,發(fā)現了新的顆粒橫向遷移模式。實驗揭示了電場相對強度和壓力梯度對確定粒子橫向定位的重要性。
-
- 液滴微流控:細胞或顆粒包封
- 液滴微流應用的一個重要應用是細胞或顆粒包封或者其他物質的包封,也就是把所需要的物質包裹到液滴內部,液滴作為一個獨立的腔室,起到隔絕作用。
-
- 微流控混合技術制備LNP遞送系統(tǒng)的影響因素
- 微流控技術是將脂質與核酸分別溶解在水相和有機相,將兩相溶液注入制備系統(tǒng)的兩條入口通道
-
- 微流控混合技術制備LNP遞送系統(tǒng)的影響因素
- LNP主要由可電離陽離子脂質、膽固醇、中性輔助磷脂和聚乙二醇修飾的磷脂組成,目前主流的LNP制備方法是微流控混合技術。
-
- 微流控自動化與Sievers Eclipse內毒素檢測儀
- 微流控自動化帶來了高通量、快速的檢測設置、最少的手動時間和簡單的培訓。
-
- 北京納米展-江蘇微流控展同時起航,圓滿落幕
- 9月22-24日CIF同時參加了2023第二屆納米光電按材料與半導體器件發(fā)展論壇和2023第十屆中國微流控高端學術論壇暨第三屆國際微流控產業(yè)論壇。
-
- 微流控會議邀約 | Microblox邀您參加第十一屆中國微流控高端學術論壇
- 屆時將展示新產品細胞分選系統(tǒng) Odin,并舉辦“雙乳滴\x26amp;OOC”的研討會,誠邀各位蒞臨,共同探討交流。
-
- 微流控會議邀約 | Microblox邀您參加第七屆微流控技術應用創(chuàng)新論壇
- 屆時將展示新產品生物/細胞分選系統(tǒng)ODIN,以及各類微流控系統(tǒng)、壓力泵、流量計、器官芯片平臺OMI、若干微流控芯片等
-
- 吳佳霖:模塊化微流控 | 第3屆微流控論文大賽Award獲獎作品分享
- 該綜述概述了最新的模塊化微流控系統(tǒng)研究成果,并對其未來發(fā)展進行了探討。首先,綜述介紹了基本微流控模塊的工作原理,并評估了它們作為模塊化微流控組件的可行性。其次,綜述討論了這些微流控模塊之間的連接方法,并評估了它們的特點……
①本文由儀器網入駐的作者或注冊的會員撰寫并發(fā)布,觀點僅代表作者本人,不代表儀器網立場。若內容侵犯到您的合法權益,請及時告訴,我們立即通知作者,并馬上刪除。
②凡本網注明"來源:儀器網"的所有作品,版權均屬于儀器網,轉載時須經本網同意,并請注明儀器網(www.ghhbs.com.cn)。
③本網轉載并注明來源的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點或證實其內容的真實性,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品來源,并自負版權等法律責任。
④若本站內容侵犯到您的合法權益,請及時告訴,我們馬上修改或刪除。郵箱:hezou_yiqi
最新話題
最新資訊
- 當前關稅博弈中,穩(wěn)定的貨源可解您燃眉之急
- 易科泰受邀參加“十百千萬”農業(yè)新質人才培養(yǎng)工程-湖南農業(yè)大學專場活動
- 長沙醫(yī)學院選購我司HS-STA-002同步熱分析儀
- 秒級響應 ,國產總硫分析儀破局上陣
- 政策引領構建動力電池回收體系 千億級市場加速規(guī)范化發(fā)展
- 哈爾濱工業(yè)大學再次采購川恒儀器低溫恒溫槽3臺?
- 哈爾技術誠邀您蒞臨第十八屆百世化學制藥國際大會暨展覽會
- 2025全新上市!Labthink C860M集成式灼燒殘渣檢測系統(tǒng)
- 中國修訂《采用國際標準管理辦法》 以高標準開放推動內外貿一體化發(fā)展
- 國家科學技術獎勵改革深化 強化戰(zhàn)略引領與制度創(chuàng)新
作者榜
參與評論
登錄后參與評論