-
-
小動(dòng)物激光散斑成像系統(tǒng)
- 品牌:上海玉研
- 型號(hào): 3001
- 產(chǎn)地:上海 閔行區(qū)
- 供應(yīng)商報(bào)價(jià):面議
-
上海玉研科學(xué)儀器有限公司
更新時(shí)間:2025-04-18 09:19:33
-
銷售范圍售全國
入駐年限第3年
營業(yè)執(zhí)照已審核
- 同類產(chǎn)品動(dòng)物活體成像設(shè)備(27件)
立即掃碼咨詢
聯(lián)系方式:18502129044
聯(lián)系我們時(shí)請(qǐng)說明在儀器網(wǎng)(www.ghhbs.com.cn)上看到的!
掃 碼 分 享 -
為您推薦
產(chǎn)品特點(diǎn)
- 小動(dòng)物激光散斑成像系統(tǒng),動(dòng)物激光散斑成像系統(tǒng),大鼠激光散斑成像系統(tǒng),小鼠激光散斑成像系統(tǒng),動(dòng)物血流儀,小動(dòng)物血流儀,大鼠血流儀,小鼠血流儀
詳細(xì)介紹
激光散斑成像系統(tǒng)(激光多普勒掃描成像系統(tǒng))利用多普勒原理,通過光頻譜分析獲得血流分布圖,具有實(shí)時(shí)成像且分辨率高的特點(diǎn),適合對(duì)多種組織器官進(jìn)行點(diǎn)式或線式的快速掃描。
可以對(duì)組織血流進(jìn)行連續(xù)監(jiān)測,用于記錄由于皮膚營養(yǎng)和體溫調(diào)節(jié)等因素引起的毛細(xì)血管,微靜脈和微動(dòng)脈中的血流變化,如腦皮質(zhì)血流、海馬血流、腸系膜血流、肝血流、腎血流、血流等各組織血流量、流速、組織血氧測定。廣泛應(yīng)用于臨床研究和科研實(shí)驗(yàn)室。
型號(hào):OZ-2/OZ-3
性能介紹:
· 非接觸:圖像由低功率激光掃描組織獲得。患者與掃描儀之間距離ZD1m;
· 日間操作:獨(dú)特的光學(xué)設(shè)計(jì),即使在室內(nèi)環(huán)境光線很強(qiáng)時(shí)也能操作;
· 重復(fù)掃描模式:可對(duì)進(jìn)行性反應(yīng)成像,并通過自動(dòng)分析功能定量;
· 彩色數(shù)碼相機(jī)簡化掃描設(shè)置,并提供掃描區(qū)域的照片;
· 高分辨率高達(dá)256x256個(gè)
· 獨(dú)立檢測:分辨率為0.2~2.0mm/像素
· 還可提供0.1mm/像素的高分辨率型號(hào);
· 靈活的掃描尺寸,從1像素到50cmx50cm的任意矩形;
· 界面友好的軟件,數(shù)據(jù)庫記錄并存儲(chǔ)了患者資料和圖像信息非常容易進(jìn)入和進(jìn)行搜索;
· 雙波長/高分辨率版本可供選擇;
激光多普勒血流儀的測試原理圖:
主要技術(shù)參數(shù):
· 激光光源:單波長系統(tǒng),近紅外780nm或830nm,紅光635nm-690nm,2.5mW,光束1.0mm,IEC 60825-1:2001標(biāo)準(zhǔn)3R級(jí);
· CCD相機(jī):自動(dòng)聚焦,電動(dòng)10倍光學(xué)變焦,752x582像素分辨率;
· 帶寬:取決于掃描速度:低通(3db) 20Hz、100Hz或250Hz;
可選高通(0.1db)3Khz、15Khz或22.5Khz;· 范圍和掃面區(qū)域:距離20cm,ZD面積為13cmx13cm;距離100cm,ZD面積為50cmx50cm.
· 掃描速度:約4ms/像素,10ms/像素或50ms/像素;
· 典型成像速度為20秒完成15cmx15cm圖像在64x64像素分辨率;
· 5分鐘內(nèi)完成50cmx50cm,圖像在256x256像素分辨率;
· 空間分辨率:ZD256x256像素:20cm處0.2mm/像素的“常規(guī)掃描”,10cm處2.0mm/像素的“大點(diǎn)掃描”
· 照明條件:正常環(huán)境照明;
· 軟件:基于Windows?的控制;
· 處理和分析軟件支架:移動(dòng)支架、桌面支架;
· 電壓:接受84-264V交流電,50VA,50-60Hz
· 控制器:尺寸W H D mm 305 x 115 x 260;重量4.5kgs.
· 掃描頭:尺寸W H D mm 426 x 244 x 300;重量8kgs.
· 存放溫度:0-45℃.
· 使用溫度:15-30℃.
胃部血流實(shí)例圖:
胃部血流實(shí)例圖:
文獻(xiàn)參考:
1.Tomita I, Kume S, Sugahara S, et al. SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metab. 2020;32(3):404-419.e6. doi:10.1016/j.cmet.2020.06.020
2.Krawetz RJ, Abubacker S, Leonard C, et al. Proteoglycan 4 (PRG4) treatment enhances wound closure and tissue regeneration. NPJ Regen Med. 2022;7(1):32. doi:10.1038/s41536-022-00228-5.
3.Sugimoto K, Nomura S, Shirao S, et al. Cilostazol decreases duration of spreading depolarization and spreading ischemia after aneurysmal subarachnoid hemorrhage. Ann Neurol. 2018;84(6):873-885. doi:10.1002/ana.25361.
4.Choi W, Key J, Youn I, et al. Cavitation-assisted sonothrombolysis by asymmetrical nanostars
for accelerated thrombolysis. J Control Release. 2022;350:870-885. doi:10.1016/j.jconrel.2022.09.008.
5.Takashima M, Nakamura K, Kiyohara T, et al. Low-dose sodium-glucose cotransporter 2 inhibitor ameliorates ischemic brain injury in mice through pericyte protection without glucose-lowering effects. Commun Biol. 2022;5(1):653. doi:10.1038/s42003-022-03605-4.
6.Lecordier S, Pons V, Rivest S, et al. Multifocal Cerebral Microinfarcts Modulate Early Alzheimer's Disease Pathology in a Sex-Dependent Manner. Front Immunol. 2022;12:813536. doi:10.3389/fimmu.2021.813536.
7.Deng Y, Ohgami N, Kagawa T, et al. Vascular endothelium as a target tissue for short-term exposure to low-frequency noise that increases cutaneous blood flow. Sci Total Environ. 2022;851(Pt 1):158828. doi:10.1016/j.scitotenv.2022.158828.
8.Lee D, Nakai A, Miwa Y, et al. Retinal Degeneration in a Murine Model of Retinal Ischemia by Unilateral Common Carotid Artery Occlusion. Biomed Res Int. 2021;2021:7727648. doi:10.1155/2021/7727648.
9.Shimizu T, Terawaki K, Sekiguchi K, et al. Tokishakuyakusan ameliorates lowered body temperature after immersion in cold water through the early recovery of blood flow in rats. J Ethnopharmacol. 2022;285:114896. doi:10.1016/j.jep.2021.114896.
10.Kobayashi H, Zha X, Nagase K, et al. Phosphodiesterase 5 inhibitor suppresses prostate weight increase in type 2 diabetic rats. Life Sci. 2022;298:120504. doi:10.1016/j.lfs.2022.120504.
11.Yamamoto H, Okada M. Sympathetic ganglionectomy for facial blushing using application of laser speckle flow graph. J Thorac Cardiovasc Surg. 2018;156(3):1326-1331. doi:10.1016/j.jtcvs.2017.12.147.
12.Majima T, Matsukawa Y, Funahashi Y, et al. The effect of mirabegron on bladder blood flow in a rat model of bladder outlet obstruction. World J Urol. 2020;38(8):2021-2027. doi:10.1007/s00345-019-02939-9.
13.Mizuno Y, Taguchi T. A hydrophobic gelatin fiber sheet promotes secretion of endogenous vascular endothelial growth factor and stimulates angiogenesis. RSC Adv. 2020;10(42):24800-24807. doi:10.1039/d0ra03593a.
14.Shibahara T, Ago T, Nakamura K, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. eNeuro. 2020;7(2):ENEURO.0474-19.2020. doi:10.1523/ENEURO.0474-19.2020.
15.Ramakrishna K, Singh N, Krishnamurthy S. Diindolylmethane ameliorates platelet aggregation and thrombosis: In silico, in vitro, and in vivo studies. Eur J Pharmacol. 2022;919:174812. doi:10.1016/j.ejphar.2022.174812.
更多信息,敬請(qǐng)來電咨詢。
-
廠商推薦產(chǎn)品